
www.manaraa.com

Performance Model Building
of Pervasive Computing∗

Andrea D’Ambrogio and Giuseppe Iazeolla
Dept. of Computer Science S&P
University of Roma TorVergata

E-Mail: {dambro,iazeolla}@info.uniroma2.it

Abstract

Performance model building is essential to predict the
ability of an application to satisfy given levels of perfor-
mance or to support the search for viable alternatives.

Using automated methods of model building is becom-
ing of increasing interest to software developers who have
neither the skills nor the time to do it manually.

This is particularly relevant in pervasive computing,
where the large number of software and hardware compo-
nents requires models of so large a size that using tradi-
tional manual methods of model building would be error
prone and time consuming.

This paper deals with an automated method to build per-
formance models of pervasive computing applications,
which require the integration of multiple technolo-
gies, including software layers, hardware platforms and
wired/wireless networks. The considered performance mod-
els are of extended queueing network (EQN) type. The
method is based on a procedure that receives as in-
put the UML model of the application to yield as output
the complete EQN model, which can then be evalu-
ated by use of any evaluation tool.

1. Introduction

Pervasive computing is based on the use of heteroge-
neous platforms consisting of various computing devices
that collect and elaborate data for use by a multiplicity of
fixed or mobile users. The platforms also run distributed
and heterogeneous software to both coordinate hardware
devices and provide services to customers. Such a complex

∗ This work was supported by the Italian Ministry of Education, Uni-
versities and Research (MIUR), in the framework of the FIRB-Perf
project, by the University of Roma TorVergata Research Program on
“Performance Modeling of Service-oriented Architectures for Qual-
ity Verification” and by the University of Roma TorVergata CERTIA
Research Center.

of components is performance critical both from the user
point of view and from the service provider point of view. It
is thus important to introduce appropriate methodologies to
build performance models and evaluate such models. Since
of the large number of software and hardware components,
the model building activity should be based on innovative
automated methods rather than on traditional manual meth-
ods, based on experience and intuition, that would be error-
prone and time consuming.

This paper introduces an automated method to build per-
formance models of pervasive computing architectures. Cir-
cumstances in which it is important to make use of auto-
mated model building methods in pervasive computing are,
e.g., when it is necessary to:

• predict the performance of a new pervasive application
at development time;

• re-design or re-configure the software application in
order to maintain a given level of service;

• evaluate the applications scalability so that additional
users may be accommodated without impact on the ex-
isting ones;

• identify the components (software, hardware or net-
work elements) that are critical to reaching a satisfy-
ing end-to-end performance.

So far, the model building methods that have been pro-
posed roughly differ for [2, 10]:

• the type of performance model that is produced (e.g.,
queueing network, petri net, markov chain, process al-
gebra, etc.);

• the type of software models from which the perfor-
mance model is produced (e.g., UML models, execu-
tion graphs, architecture description languages, etc.);

• the automation degree, or the extent to which a method
implementation can be easily produced to automati-
cally build the model.

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

www.manaraa.com

This paper focuses on performance models of queueing
network (QN) type. The proposed method receives as input
the UML model of the pervasive software application and
yields as output the QN model, ready to be evaluated by use
of any evaluation tool.

Model building methods proposed in literature are partly
manual in nature and based on experience and intuition
[4, 16] and partly semi-automatic [3, 5]. In order to qual-
ify model building as automatic, the process should be
procedure-driven according to the following main steps:

a) translate the UML model into an intermediate software
model based on the execution graph (EG) formalism
[17, 18];

b) derive the queueing network graph, consisting of ser-
vice centers and connections between centers, based
on the platform configuration;

c) parametrize the model in b) by use of the model in a),
in other words identify the centers’ service rates and
the routing probabilities among centers.

The obtained QN can then be evaluated to yield perfor-
mance predictions in terms of response time, throughput,
utilization, etc.

This paper introduces an automated method to build a
QN model from UML models. The obtained QN is an ex-
tended queueing network (EQN), or a QN that can model
resource simultaneous possession, fork-join software prim-
itives, split primitives, etc. It is assumed that step a) has al-
ready taken place, in other words an EG has been derived
from a set of UML documents (namely, the use case dia-
gram and the set of sequence diagrams that realize the use
cases), as described in details in [3, 6].

The method receives as input a part of the UML model
(i.e., the deployment diagram) and the EG of step a), and
yields as output the complete EQN model, which can then
be evaluated by use of any evaluation tool.

Being procedure-driven, the method can easily be imple-
mented into tools that enable application designers to eas-
ily introduce performance prediction activities as an integral
part of their work. In particular, the method can be imple-
mented into an XMI-based tool, that receives as input two
XMI documents (i.e., the execution graph and the deploy-
ment diagram) and produces the XMI document of the re-
sulting EQN model, as fully described in [8].

It is worth noting that one of the problems that arises in
model building is taking into consideration the various lay-
ers of software between the system platform and the user
application. The model should then be produced according
to a multi-level approach to explicitly consider all abstrac-
tion levels of the system [9]. Such an aspect however is out
of the scope of this paper, which concentrates instead on the
automation of the model building method and will thus only

deals with a single level of abstraction (i.e., the user appli-
cation level).

Paper content is divided into Section 2, which describes
the pervasive computing architecture, and Section 3, which
illustrates the proposed method to build the corresponding
EQN model.

2. The Pervasive Computing Architecture

The goal of pervasive computing is to enable users to ac-
cess data or run software applications from any site in any
situation (“anywhere and anytime” [19]). To achieve this
universal utility, any pervasive software application should
be continuously available even in presence of user or termi-
nal mobility, should transparently adapt to the current con-
text of the user and reflect the individual preferences of the
user.

Figure 1 illustrates an example architecture that can sup-
port various kinds of services (e.g., providing personalized
services about weather conditions, traffic, public utilities,
security, etc., to fixed and mobile users). As shown in Fig-
ure 1, the architecture integrates multiple technologies, such
as sensor networks, wired and wireless networks, hardware
servers, fixed and mobile user terminals.

Sensor networks are composed of a large number of sen-
sor nodes, which are densely deployed within a geographic
area to monitor a wide variety of environment conditions,
such as temperature, humidity, vehicular movement and the
presence or absence of certain kinds of objects along with
current characteristics such as speed, direction, and size
of an object [1]. A sensor node is made up of a sensing
unit (sensor plus analog to digital converter or digital sen-
sor), a processing unit (associated to a small storage unit),
a transceiver unit and a power unit. The analog signals pro-
duced by the sensors are converted to digital signals and
then fed into the processing unit that manages the proce-
dures that make the sensor node carry out the assigned sens-
ing tasks. The transceiver unit connects the node to the sen-
sor network.

The various sensor networks are connected to the back-
end Internet network by means of proxy servers, which pro-
cess, store and relay the events gathered by the sensors on a
given site (there may exist more than one such sites - local
site 1 through local site n - as in Figure 1)[11]. Such events
traverse the sensor network (a low-rate and low-power wire-
less network, e.g., IEEE 802.15.4) to reach the proxy server
that acts as a front-end for the sensor network.

On the left side of Figure 1, users interact with the ap-
plication to get personalized information. Two type of users
are considered, the fixed user and the mobile user.

The fixes user uses a standard web browser to execute
a client application that, upon successful authentication,
sends a request about the status of a given site. The request

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

www.manaraa.com

WAN

Multi-user Station

Web
Server

Proxy
Server 1

Proxy
Server n

PDA 1

Wireless
Network

WAP
Gateway

Sensor
Network 1

Sensor
Network n

Mobile
User 1

Fixed
User 1

PDA m

Mobile
User m

Fixed
User N

n1

1

nn

1

Sensors at
local site 1

Sensors at
local site n

Figure 1. Pervasive computing architecture

is sent through the WAN (a wide area network of DSL type)
to the web server, where the application server first retrieves
the user preferences and then forwards the request through
the WAN to the relevant proxy server.

The mobile user uses a WAP (Wireless Application Pro-
tocol) browser to execute a user agent, i.e., a program run-
ning on the PDA (Personal Digital Assistant) that acts on
the users behalf. The user agent sends a WAP request to
the WAP gateway through a wireless network (e.g., a GSM
network with GPRS - General Packet Radio Service). The
type of information requested by the user depends on the
current location of the user, as well as on the user prefer-
ences and the PDA capabilities. To this purpose, the PDA
location and capabilities are stored in the user agent pro-
file (e.g., a CC/PP profile [12]) sent with the WAP request,
while the user preferences are stored at the web server site.
The WAP gateway authenticates the user, decodes the WAP
request and forwards it as a HTTP request to the web server,
through the WAN. The web server first retrieves the user
preferences and then queries the relevant proxy server. The
response obtained from the proxy server is then sent back to
the WAP gateway that finally encodes it, for appropriate vi-
sualization on the PDA screen, before transmitting the re-
sponse to the user’s PDA [13].

It is assumed that the pervasive application is described
by a software model of UML type [14]. The model consists
of a deployment diagram and a set of a execution graphs1,

1 The execution graph is not part of the UML notation, but results from

described in Section 2.1 and Section 2.2, respectively.

2.1. The Pervasive Computing Deployment Dia-
gram

The deployment diagram (DD) describes the pervasive
computing platform and devices, with the allocation of soft-
ware components onto platform devices.

Figure 2 illustrates the considered DD, which consists of
nodes that represent:

• a Multi-user Station, which executes the ClientApp
component and includes a CPU (MScpu), a disk
(MSdisk) and a terminal (MSterm) operated by
fixed users;

• number m PDAs (PDA1 through PDAm), which exe-
cute the UserAgenti component and include a CPU
(PDAicpu), a storage (PDAistore) and a terminal
(PDAiterm) operated by mobile users;

• a WAP Gateway, which executes the WapServer
component and includes a CPU (WGcpu) and a disk
(WGdisk);

• a Web Server, which executes the AppServer com-
ponent and includes a CPU (WScpu) and a disk
(WSdisk);

the merge of a set of UML diagrams (namely, the use case diagram and
the set of sequence diagrams that realize the use cases) from which it
can be automatically derived, as fully described in [3] and [7].

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

www.manaraa.com

Local Site 1

Multi-user Station cpu

MScpu
 CPU: 100 MIPS

WScpu
 CPU: 500 MIPS

WAN

WAN
 DSL: 2 Mbps

Web Server disk

MSterm
 users number: N
 think time: 1 sec

MSdisk:
 I/O rate: 100 IOPS

WSdisk:
 I/O rate: 150 IOPS

ClientApp

Multi-user
Station terminal

Multi-user
Station disk

Wireless
Network

WAP gateway

WapServer

WN
 GPRS: 50 kbps

WGcpu
 CPU: 400 MIPS

WAP gateway
disk

WGdisk:
 I/O rate: 100 IOPS

Web Server CPU

AppServer

PDA m

PDA 1

PDA1term
 users number: 1
 think time: 10 sec

PDA1 cpu

User
Agent1

PDA1 terminal
PDA1cpu
 CPU: 200 MIPS

PDA1 storage

PDA1store:
 I/O rate: 10 IOPS

Local Site n

Proxy Server 1 cpu

Proxy Server 1
disk

PS1cpu
 CPU: 300 MIPS

PS1disk:
I/O rate: 120 IOPS

Sensor Network 1 Sensors 1

SN1
 IEEE 802.15.4: 20 Kbps S1

 sensors number: n1
 event generation time: 2 sec

Proxy1

Figure 2. The pervasive computing Deployment Diagram (DD)

• number n Proxy Servers (PS1 through PSn), which
execute Proxyi components and include a CPU
(PSicpu) and a disk (PSidisk);

• a wide-area network (WAN), that connects the Multi-
user Station, the WAP Gateway, the Web Server and
the Proxy Servers;

• number n Sensor Networks (SN1 through SNn), that
connect sensor nodes at the n local sites;

• number n sets of Sensors (S1 through Sn), each one
consisting of a number of sensor nodes (n1 through
nn) that produce monitoring events at a given local
site;

Notes associated to DD nodes give the performance-
oriented characteristics of each node, in term of capacities
(for nodes of cpu and disk type), bandwidth (for nodes of
network type), number of users with think time (for nodes
of terminal type) and number of sensors with event genera-
tion time (for nodes of sensor type). For the sake of clarity,
such annotations are expressed in natural language rather
than by use of the stereotypes and the tag values of the UML
Performance Profile [15].

The performance critical components can be identified
into:

• each proxy server PSi (i = 1..n), loaded by a large
number ni of sensors and by the interactions with the
web server;

• the WAP gateway, loaded by number m PDAs;

• the web server WS, loaded by the WAP gateway and
number N fixed users;

• each PDAi (i = 1..m), that can be loaded by a complex
software application even though individually used;

• the multi-user station, loaded by number N fixed users.

Building the performance model may thus imply deriv-
ing a set of n submodels for the proxy servers, m submodels
for the PDAs in addition to the WAP gateway submodel, the
web server submodel and the multi-user station submodel.

Further submodels are the n sensor networks submod-
els, the wireless network submodel and the WAN submodel.
For the sake of brevity, such submodels are not detailed in
this paper and are each represented by a single DD node,
as shown in Figure 2. In case of performance criticality

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

www.manaraa.com

they can however be adequately studied in any detail, as de-
scribed in [5].

2.2. The Pervasive Computing Execution Graph

According to conventions, an execution graph (EG) is
a standard flow graph enriched with resource usage data,
specified by associating a so-called resource demand vec-
tor to each EG block [17]. An EG block denotes a piece
of straight-line code or a sequence of program statements
that are all executed. A resource demand vector Di, associ-
ated to block i, consists of M components (where M is the
number of DD nodes), each component relating to a dis-
tinct node in the DD (e.g., a CPU node, a DISK node, a
WAN node, etc.):

Di = (Di,0, ..., Di,k, ..., Di,M−1)

The generic Di,k gives the number of elementary opera-
tions (e.g., nCPU , nDISK , nWAN , etc.) the EG block i de-
mands to DD node k.

Figure 3 illustrates the EGs for the considered pervasive
application. The three EGs in the upper part of Figure 3 rep-
resent, from left to right, the typical execution flow of fixed
users, mobile users and sensors (at local sites), respectively.

The EG of a fixed user starts with a call for user’s au-
thentication (call authenticate() block). The au-
thentication is performed by a software server block
(authenticate() block)2. After user’ authentica-
tion the EG enters a CASE block and proceeds by call-
ing, with probability pi, the getStatus(sitei)
(i = 1..n) operation, which is performed again by a soft-
ware server block. Finally, the EG visualizes the resulting
page (displayPage() block).

The EG of the mobile user i (i = 1..n) first retrieves
the user profile (getProfile() block) and than sends
a WAP request (WapRequest() block). The request is
processed by the processRequest() block, whose re-
sponse is finally visualized on the PDA screen of the mobile
user (displayResults() block).

The EG of a sensor of any site (site 1 through site
n) simply consists of a request to record the event pro-
duced by a sensor (call proxyi.recordEvent()
block) followed by its execution performed by the
recordEvent() software server block.

The EGs in the lower part of Figure 3 give the details
of software server blocks, with side bars, in the upper part.
Each sub-EG is easily identified by the corresponding la-
bels on BEGIN and END blocks.

2 Software servers are blocks that may be accessed by a more than one
user simultaneously. The maximum number of simultaneous users is
specified by the degree of multiplicity on the left side diamond [3].
A block with side bars is called extended block. The presence of side
bars indicates that the software server is itself a sub-EG consisting of
several blocks that are specified elsewhere.

Figure 3 also gives demand vectors of each EG block.
The demand vector elements are specified according to
the vector format illustrated at the bottom of each EG
or sub-EG. As an example, the execution of the call
authenticate() block in the fixed user’s EG requires
1 access to MSterm, 20×103 instructions of MScpu, 2 ac-
cesses to MSdisk, 0 instructions of WScpu, 0 accesses to
WSdisk and 1 access to WAN.

3. The EQN Model Building Procedure

This section illustrates the model building procedure.
The procedure receives as input the EGs and the DD of the
pervasive application and yields as output the EQN model,
and consists of 6 steps:

step 1) introduce a service center of the EQN for each node
of the DD;

step 2) build the centers reachability graph (CRG) (in
other words, the graph that specifies interconnec-
tion between centers) on the basis of the DD commu-
nication links;

step 3) transform the CRG into a primordial EQN, that
only includes waiting queues in front of service cen-
ters (where necessary);

step 4) introduce EQN job classes, one class for each EG;

step 5) by use of the EGs, transform the primordial into
a more complete EQN, that includes job classes, di-
rection of links between centers and additional centers
(fork, join, split, lock, free, etc.), where necessary;

step 6) complete the EQN by specifying the service rate
of each service center and the routing probabilities be-
tween centers, for each job class.

At step 1 of the procedure, each node of the DD is trans-
formed into a service center of EQN. The EQN will thus in-
clude one MScpu center, one MSdisk center, one WAN cen-
ter, one sub-graph for each local site and for each PDA, and
so forth.

Step 2 of the procedure builds the CRG by adding undi-
rected links between the centers identified at step 1. An
undirected link is added for each DD communication link,
as illustrated in Figure 4.

At step 3, the model building procedure proceeds by in-
troducing waiting queues (with FCFS service discipline) in
front of all centers of CPU or DISK type. The WAN, the
wireless network and the sensor networks are modeled by
aggregate delay centers, according to assumptions, while
the sensors, the multi-user station terminal and the PDA ter-
minals are modeled by infinite service centers, as by con-
ventions.

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

www.manaraa.com

UserAgenti:
displayResults()

MobileUseri
(i=1.m)

MobileUseri

UserAgentI:
WapRequest()

AppServer:
call i.siteStatus()

AppServer:
buildPage()

AppServer:
sendPage()

AppServer:
getStatus(sitei)

Proxyi:
siteStatus()

si

AppServer:
getStatus(sitei)

a AppServer:
authenticate()

ClientApp:
call authenticate()

ClientApp:
call getStatus(site1)

AppServer:
getStatus(site1)

a

ClientApp:
displayPage()

FixedUser

FixedUser

CASE

ClientApp:
call getStatus(siten)

AppServer:
getStatus(siten)

a

p1

p
n

Sensori
(i=1..n)

Sensori:
call

proxyi.recordEvent()

Proxyi:
recordEvent()

si

Sensori

WapServer:
call getStatus(site1)

AppServer:
getStatus(site1)

a

WapServer:
encodeResults()

WapServer:
processRequest()

WapServer:
processRequest()

CASE

WapServer:
call getStatus(siten)

AppServer:
getStatus(siten)

a

p1

p
n

WapServer:
decodeRequest()

Proxyi:
recordEvent()
(i=1..n)

Proxyi:
recordEvent()

Proxyi:
processEvent()

Proxyi:
updateData()

Proxyi:
siteStatus()
(i=1..n)

Proxyi:
siteStatus()

Proxyi:
getData()

Proxyi:
sendResults()

AppServer:
getUserPref()

UserAgenti:
getProfile()

WapServer:
authenticateUser()

WapServer:
sendResults()

DFixedUser = (MSterm, MScpu, MSdisk, WScpu, WSdisk, WAN)

(1,20K,2,0,0,1)

(0,15K,1,0,0,1)

(0,15K,1,0,0,1)

(1,300K,6,0,0,0)

(1,300K,8,0)

(0,20K,2,1)

(1,200K,6,0)

(1,1)

(300K,10,0)

(25K,2,1)

(200K,6,0)

(15K,2,1)

(300K,12,0,0)

(600K,10,0,0)

(500K,8,0,0)

(25K,2,1,0)

(800K,4)

(200K,20)

(200K,20,0)

(30K,2,1)

(20K,2,0,1)

(20K,2,0,1)

DMobileUseri = (PDAiterm, PDAicpu, PDAistore, WN)

DSensori = (Si, SNi)

DgetStatus = (WScpu, WSdisk, WAN) DprocessRequest = (WGcpu, WGdisk, WN, WAN)

DrecordEvent = (PSicpu, PSidisk) DsiteStatus = (PSicpu, PSidisk, WAN)

(0,0,0,400K,8,1)

WapServer:
processRequest()

w

Figure 3. The Execution Graph (EG) of the considered pervasive application

At step 4, job classes are introduced in the EQN, one
class for each EG. According to Figure 3, number 1+m+n
classes of jobs are introduced, namely:

• 1 fixed user’s job class (FixedUser), associated to the
corresponding EG in the upper-left part of Figure 3;

• number m mobile user’s job classes (MobileUser 1
through MobileUser m), associated to the m replicas
of the EG in the upper-medium part of Figure 3;

• number n sensor’s job classes (Sensor 1 through Sen-
sor n), associated to the n replicas of the EG in the
upper-right part of Figure 3, with i=2 (local site1);

Step 5 of the procedure is carried out by visiting the EGs
corresponding to job classes introduced at step 4 and in-
crementally building the EQN. For each EG, the function
build EQN is executed, which takes as input the EG and
the CRG and returns the EQN, as described in Section 3.1.

Step 6 of the procedure is finally carried out to obtain
the EQN parameters for each job class. To this purpose, the
function parameterize EQN is executed, which takes as
input the EQN built at step 5 and returns the parameterized
EQN, as described in Section 3.2.

The so obtained complete EQN can then be evaluated by
use of any evaluation tool (e.g., QNAP, RESQ, etc.) to yield

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

www.manaraa.com

WN

WAN

SN1

MS
term

MS
cpu

MS
disk

WG
cpu

WG
disk

PDA1
term

PDA1
cpu

PDA1
store

WS
cpu

WS
disk

PS1
cpu

PS1
disk

S1

PDA 1

PDA m

Local Site 1

Local
Site n

Figure 4. Centers reachability graph (CRG)
obtained from the DD in Figure 2

the required performance indices of the considered perva-
sive application, such as response times, throughputs and
utilizations3.

3.1. The function build EQN

The function build EQN takes as input the following
four parameters:

1. EG: the considered EG (or any its sub-EG);

2. EGocc: a double that specifies the number of occur-
rences of the EG specified in the previous parameter
(i.e., the number of times it is executed);

3. CRG: the CRG;

4. startC: the starting EQN center visited.

and returns the EQN.
An example assignment of such parameters and execu-

tion of the function build EQN for the “FixedUser” EG in
Figure 3 is as follows:

EG = the ‘‘FixedUser’’ EG;
EGocc = 1;
CRG = the CRG obtained at step 1;
startC = the reference center (i.e., ‘‘MSterm’’)
EQN = build_EQN(EG,EGocc,CRG,startC);

The rationale of the function build EQN is that the suc-
cession of the EG blocks with their demand vectors and the
succession of the demand vector elements within each EG
block provide the necessary information to determine the

3 EQN evaluation results are not presented here, the focus of the paper
being limited to model building.

flow of EQN jobs onto the links given by the CRG built at
step 2 of the method, thus giving directions to such links
[5].

The function is driven by a variable that identifies the EG
block currently visited and by a variable that identifies the
EQN center currently visited by the corresponding job. In
the course of its execution, the function updates the entries
(h,k) of a matrix A(jc) that collects data about the num-
ber of times the job of class jc moves from center h to cen-
ter k, being jc the variable that identifies the job class cor-
responding to the EG.

When visiting a given block of the EG, depending on
the block type, an execution of build EQN yields a new
EQN portion and adds this to the EQN already obtained
from the previously visited EG blocks. This is illustrated
in Figure 5 that shows the addition of the sub-EQN result-
ing from the application of build EQN to the software
server authenticate() of the FixedUser EG in Fig-
ure 3. The Token Pool with number a tokens and the re-
lated LOCK and FREE centers are introduced. According to
the CRG and to what specified by the demand vector of the
authenticate() block, the job flows from the last vis-
ited center (i.e., WAN), then enters the LOCK center to ac-
quire a token and finally cycles between the WScpu and
the WSdisk to execute the 400K WScpu instructions into
8 visits to WSdisk. After the last visit to the WSdisk the
job returns to the WScpu (ninth visit), from where it en-
ters the FREE to release the token and finally return to the
WAN. The corresponding update of matrix A by use of de-
mand vector data proceeds as follows:

AWAN,LOCK = AWAN,LOCK + 1
ALOCK,WScpu = ALOCK,WScpu + 1
AWScpu,WSdisk = AWScpu,WSdisk + 9
AWSdisk,WScpu = AWSdisk,WScpu + 8
AWScpu,FREE = AWScpu,FREE + 1
AFREE,WAN = AFREE,WAN + 1

It is easily seen that the 400×103 CPU instructions spec-
ified by the demand vector are executed by 9 visits to the
WScpu.

In a similar way, all remaining sub-EQNs are derived to
obtain the complete EQN, illustrated in Figure 6, that will
be reached when the final block of the EG has been visited.

3.2. The function parameterize EQN

The function parameterize EQN takes as input the
EQN and the matrix A built by the build EQN function
and returns the EQN parameters for each job class. The en-
tries of matrix A are used to obtain both the service rate μ of
each service center and routing probabilities between cen-
ters, for each job class.

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

www.manaraa.com

WS
LOCK

WS
FREE

PS1
LOCK

PS1
FREE

MScpu MSdisk

WScpu WSdisk

PS1cpu PS1disk

SN1

WAN

1

N

MSterm

1

n1

S1

Token
Pool

tokens = s1

Token
Pool

tokens = a

WG
LOCK

WG
FREE

WN

Token
Pool

tokens = w

WGcpu WGdisk

PDA1cpu PDA1store

1

PDA1term

PDA 1

PDA m

Local Site 1

Local
Site n

Figure 6. EQN built from the EG in Figure 3 and the DD in Figure 2

EQN built
from
EG blocks
already visited

LOCK

FREE

Token
Pool tokens = a

WAN

WScpu WSdisk

Figure 5. Sub-EQN resulting from the appli-
cation of the function build EQN to the soft-
ware server authenticate() in Figure 3

To this purpose, let’s denote by μk(jc) the mean ser-
vice rate of center k for jobs of class jc, and by Pk,h(jc)
the probability to move from center k to center h for jobs of
class jc jobs. Then:

μk(jc) =
Vk(jc)
opsk

× capacityk (if k is not a CPU)

μk(jc) =
Vk(jc)

instrk(jc)
× capacityk (if k is a CPU)

where, for each center k of the CRG:

• Vk(jc) denotes the number of visits to center k by jobs
of class jc and is obtainable from matrix A (see [5]);

• Pk,h(jc) is also obtainable from matrix A (see [5]);

• instrk(jc) denotes the number of instructions the
class jc jobs demand to center k, being k a cen-
ter of CPU type;

• opsk denotes the mean number of elementary opera-
tions requested for each visit to center k, being k a
center of type different from CPU:

– if k is a disk center then opsk specifies the num-
ber of I/O operations for each visit;

– if k is a network center then opsk specifies the
number of KBytes to be transferred for each visit;

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

www.manaraa.com

Routing probabilities Pk,h

EQN
center

N
u

m
b

er
 o

f
vi

si
ts

 V
k

S
er

vi
ce

 r
at

e
k

(s
ec

-1
)

M
S

te
rm

M
S

c
p

u

M
S

d
is

k

W
S

c
p

u

W
S

d
is

k

P
S

1
c

p
u

P
S

1
d

is
k

P
S

2
c

p
u

P
S

2
d

is
k

W
A

N

L
o

c
k

W
S

F
re

e
W

S

L
o

c
k
P

S
1

F
re

e
P

S
1

L
o

c
k
P

S
2

F
re

e
P

S
2

MSterm 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MScpu 12 3500 0.08 0 0.75 0 0 0 0 0 0 0.17 0 0 0 0 0 0
MSdisk 9 90 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WScpu 31 16400 0 0 0 0 0.9 0 0 0 0 0 0 0.1 0 0 0 0
WSdisk 28 420 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
PS1cpu 11.5 30000 0 0 0 0 0 0 0.96 0 0 0 0 0 0 0.04 0 0
PS1disk 11 132 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
PS2cpu 11.5 30000 0 0 0 0 0 0 0 0 0.96 0 0 0 0 0 0 0.04
PS2disk 11 132 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

WAN 6 150 0 0.34 0 0 0 0 0 0 0 0 0.5 0 0.08 0 0.08 0
LockWS 3 – 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
FreeWS 3 – 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
LockPS1 0.5 – 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
FreePS1 0.5 – 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
LockPS2 0.5 – 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
FreePS2 0.5 – 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Figure 7. EQN parameters for the FixedUser job class

• capacityk the capacity of center k (in terms of instruc-
tions/sec, Kbit/sec or I/O operations/sec, as given by
annotation on the DD).

As an example, Table 7 gives the EQN parameters de-
rived for the FixedUser job class4. In the example case, the
number of monitored sites has been limited to only 2. Simi-
lar tables are derived by the EQN building procedure for all
remaining job classes.

3.3. Method Application

The method application effort can be seen both from the
programmer’s point of view and from the user’s point of
view.

From the programmer’s point of view, the model build-
ing procedure requires a very light programming effort to
implement steps 1 through 4, that produce the basic ele-
ments of the primordial EQN. A bit larger programming ef-
fort is instead required to implement steps 5 and 6 with the
build EQN and the parameterize EQN functions.

Regarding step 5, the build EQN function visits in suc-
cession all blocks of the EG and for each block introduces
a sub-EQN that is then linked to the partial EQN built from
the already visited blocks. The function is recursively in-
voked each time an extended block is visited.

4 It is assumed that the values p1 through pn in the Fixeduser EG (see
Figure 3) take the values p1 = p2 = 0.5. It is also assumed that opsk

is equal to 10 KBytes for network centers and to 10 I/O operations for
disk centers.

Regarding step 6, the parameterize EQN function is
invoked after the complete EQN is available and only re-
quires using matrix A to derive parameter values according
to formulas given in Section 3.2.

From the user’s (application designer’s) point of view,
the EQN model building program can be seen as a tool that
can be integrated into a CASE environment and invoked
each time decisions are to be taken either to predict the ap-
plication performance at development time, or to re-design
and re-configure the application, or to evaluate its scalabil-
ity or also to identify critical components. The reader can
find in [6] the guidelines to implement the tool according to
the XMI standard, to facilitate its integration into a CASE
environment.

Conclusions

Performance model building is essential to predict the
ability of an application to satisfy given levels of perfor-
mance or to support the search for viable alternatives. Us-
ing automated procedures of model building is particularly
relevant in pervasive computing, where the large number
of software and hardware components requires introducing
models of so large a size that using traditional manual meth-
ods of model building would be error prone and time con-
suming.

This paper has introduced an automated method for
building performance models of pervasive computing ap-
plications. The proposed method receives as input the UML

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

www.manaraa.com

deployment diagram and the execution graphs of the perva-
sive application to yield as output the parameterized EQN
model, ready to be evaluated by use of any evaluation tool.

By use of the method, the application designer can thus
identify and remove bottleneck elements, whether hard-
ware, software or network bottlenecks, and perform sensi-
tivity analysis with respect to the number of fixed or mo-
bile users, the number of deployed sensors and the number
of monitored sites.

References

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci,
Wireless sensor networks: a survey, Computer Networks, vol.
38, pp. 393–422, 2002.

[2] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, Model-
Based Performance Prediction in Software Development: A
Survey, IEEE Transactions on Software Engineering, vol. 30,
n. 5, pp. 295–310, 2004.

[3] V. Cortellessa, A. D’Ambrogio, G. Iazeolla, Automatic
Derivation of Software Performance Models from CASE doc-
uments, Performance Evaluation, 45(2-3):81–106, July 2001.

[4] V. Cortellessa, R. Mirandola, PRIMA-UML: a performance
validation incremental methodology on early UML diagrams,
Science of Computer Programming, vol. 44, pp. 101–129,
2002.

[5] A. D’Ambrogio, G. Iazeolla, Steps towards the Automatic
Production of Performance Models of Web Applications,
Computer Networks Journal, vol. 41, pp. 29–39, January
2003.

[6] A. D’Ambrogio, G. Iazeolla, Metadata-driven Design of In-
tegrated Environments for Software Performance Validation,
Journal of Systems and Software, Vol 76/2, pp. 127–146, May
2005.

[7] A. D’Ambrogio, SOON: a Tool for Software Performance
Validation, International Journal of Modeling and Simulation,
2005 (to appear).

[8] A. D’Ambrogio, G. Iazeolla, Design of XMI-based Tools to
build EQN Models of Software Systems, Proceedings of the
23rd IASTED International Conference on Software Engi-
neering (SE2005), Innsbruck, Austria, February 2005.

[9] V. De Nitto Personé, G. Iazeolla, The Achilles’ Heel of Com-
puter Performance Modeling and The Model Building Shield,
in Computer Performance Modeling: A Perspective, E. Ge-
lenbe editor, Imperial College Press, 2005 (to appear).

[10] E. Dimitrov, A. Schmietendorf, R. Dumk,UML-based Per-
formance Engineering Possibilities and Techniques, IEEE
Software, January/February 2002.

[11] A. Dunkels, T. Voigt, J. Alonso, H. Ritter, J. Schiller, Con-
necting Wireless Sensornets with TCP/IP Networks, Pro-
ceedings of the Second International Conference on
Wired/Wireless Internet Communications (WWIC2004),
Frankfurt, Germany, February 2004.

[12] G. Klyne, F. Reynolds, C. Woodrow, H.
Ohto, Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies, available at
http://www.w3.org/TR/CCPP-struct-vocab.

[13] V. Kumar, S. Parimi, D.P. Agrawal, WAP: Present and Fu-
ture, Pervasive computing, pp. 79–83, January 2003.

[14] Object Management Group, Unified Modeling Language
(UML) Final Adopted Specification, version 2.0, 2003.

[15] Object Management Group, UML Profile for Scheduling,
Performance and Time, version 1.0, September 2003.

[16] R. Pooley, P. King, The Unified Modeling Language and Per-
formance Engineering, Proceedings of IEE Software, 1999.

[17] C.U. Smith, Performance Engineering of Software Systems,
Addison Wesley, 1992.

[18] C.U. Smith, L.G. Williams, Performance Solutions: a Prac-
tical Guide to Creating Responsive, Scalable Software, Addi-
son Wesley 2002.

[19] M. Weiser, The Computer for the 21st Century, Scientific
American, vol. 265, 1991, pp. 94–104.

Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF’05)
0-7695-2447-8/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

